The Essentials of Marketing Research 4e

Lawrence S. Silver, Southeastern Oklahoma State University
Robert Stevens, Southeastern Oklahoma State University
Courtney Kernek, Southeastern Oklahoma State University
Bruce Wrenn, Andrews University
David Loudon, Samford University

About the new 4th Edition:

Identifying and assessing information is a key to a successful marketing strategy.

The Essentials of Marketing Research, 4th Edition (which was previously published by Routledge and has been totally revamped for our “textbook media” model) guides the student in designing, conducting and interpreting marketing research. This comprehensive textbook covers the full range of topics, including:

- Secondary research and data mining
- Marketing research ethics
- Internet marketing research
- Qualitative and exploratory research
- Data collection tool design and deployment
- Qualitative data analysis
- Statistical analysis
- Research report preparation

With learning objectives at the beginning of each chapter, 24 cases and free data sets, this book offers a range of tools to help students develop and test their research and analytical skills.
Fall 16 Student Options | Prices

Digital Options
- Online Book: $29.95
- Digital Bundle (Online | PDF): $36.95

Hybrid Options:
- Online | BW Loose Leaf: $44.95
- Online | BW Paperback: $54.95
- Online | Color Paperback: $69.95

For Instructors

Instructor’s Manual
Test Item File
Computerized Test Bank
PowerPoint Lecture Slides

To Request a Review Copy
info@textbookmedia.com

Textbook Media offers an alternative path.

We specialize in acquiring the rights to under-served textbooks from the big publishers, and then revising them for our textbook media model. That means a quality textbook from proven authors—a textbook that was *developed by the oligarchs via peer reviews*, and includes a competitive instructor support package. So instructors get the quality they expect, while knowing they’re keeping course costs reasonable.
Part I: THE MARKETING RESEARCH PROCESS AND DECISION MAKING 2
 Chapter 1: Introduction to Marketing Research 3
 Chapter 2: Ethics in Marketing Research 29

PART II: SECONDARY DATA AND RESEARCH DESIGNS 51
 Chapter 3: Secondary Data 52
 Chapter 4: Research Designs: Exploratory and Qualitative Research 71
 Chapter 5: Research Designs: Descriptive and Causal Research 97

PART III: MEASUREMENT, DATA COLLECTION, AND SAMPLING 123
 Chapter 6: Measurement 124
 Chapter 7: Primary Data Collection 154
 Chapter 8: Designing the Data-Gathering Instrument 176
 Chapter 9: Sampling Methods and Sampling Size 192
 Chapter 10: Fielding the Data-Gathering Instrument 213
 Chapter 11: Analyzing and Interpreting Data for Decisions 235
 Chapter 12: Analyzing Qualitative and Big Data 257
 Chapter 13: Advanced Data Analysis 269
 Chapter 14: The Research Report 289

PART IV: CASES c-1 (accompanied by free data-sets for your students)
 Case 1 Lone Pine Kennel Club c-2
 Case 2 Silver Jewelry Stores c-4
 Case 3 Select Hotels of North America c-7
 Case 4 River Pines School: A c-10
 Case 5 River Pines School: B c-13
 Case 6 Gary Branch, CPA c-18
 Case 7 Juan Carlos’ Mexican Restaurant c-24
 Case 8 Usedcars.com c-31
 Case 9 Welcome Home Church c-38
 Case 10 The Learning Source c-43
 Case 11 Madison County Country Club c-47
 Case 12 Plasco, Inc. c-52
 Case 13 St John’s School c-56
 Case 14 The Webmasters c-61
 Case 15 House of Topiary c-65
 Case 16 Professional Home Inspection c-68
 Case 17 Europska Databanka c-75
 Case 18 Northside Chiropractic Services c-81
 Case 19 Internet Versus Mail Surveys c-86
 Case 20 Louisiana Purchase Gardens and Zoo c-90
 Case 21 Mac's Sausage Company c-96
 Case 22 The Online Marketplace c-100
 Case 23 Victorian Rose Gift and Flower Shop c-104
 Case 24 MCS Publishing Company c-109

INDEX i-1
Part 3

Measurement, Data Collection, and Sampling
Chapter 6

Measurement

Chapter Outline

6.1 INTRODUCTION

6.2 THE PROCESS OF MEASUREMENT

 Step 1: Determine the Construct(s) of Interest
 Step 2: Specify the Construct’s Domain
 Step 3: Establish Operational Definitions
 Step 4: Collect Data to Test Measures
 Step 5: Purify the Measures
 Step 6: Conduct Validity Tests
 Step 7: Analyze Research Findings

6.2a Commentary on the Measurement Process

6.3 WHAT IS TO BE MEASURED?

6.4 WHO IS TO BE MEASURED?

6.5 HOW TO MEASURE WHAT NEEDS TO BE MEASURED

 6.5a The Nominal Scale
 6.5b The Ordinal Scale
 6.5c The Interval Scale
 6.5d The Ratio Scale

6.6 ASSESSING RELIABILITY AND VALIDITY OF OUR MEASURES

 6.6a Reliability
 6.6b Validity
 6.6c Commentary on Reliability and Validity

6.7 MEASURING PSYCHOLOGICAL VARIABLES

 6.7a Attitude Measurement
 6.7b Itemized Rating Scales
 6.7c Likert Scales
 6.7d Rank-Order Scales
 6.7e Comparative Rating Scales
 6.7f Semantic Differential Scales
 6.7g Stapel Scales

6.7h Commentary on Scales

SUMMARY

DISCUSSION QUESTIONS

ENDNOTES
Learning Objectives

Upon completing this chapter, you should understand:

- What is meant by the measurement process.
- The differences in nominal, ordinal, interval, and ratio levels of measurements.
- The concepts of validity and reliability of measurement.
- What is meant by a measurement scale.
- How scales are used in marketing research.

6.1 INTRODUCTION

In Chapter 1 we described marketing research as producing the information managers need to make marketing decisions. In that chapter we also listed numerous examples of how the results of marketing research can inform marketing decisions such as in concept and product testing, market segmentation, competitive analysis, customer satisfaction studies, and the like. These, and many other examples of marketing research studies, illustrate the need for measurement: “rules for assigning numbers to objects in such a way as to represent quantities of attributes.”

Several things we should note about this definition:

1. Not all of what researchers do involves measurement. Researchers are interested in generating information, which leads to knowledge, which leads to better decisions. Sometimes that information is in the form of insights from exploratory research studies such as focus groups, in-depth interviews, projective research, and similar methods. For these techniques we are generating information, but we are not assigning numbers to objects, so we are not measuring. As we have said before, information does not have to have numbers attached to it to have value; we are dangerously oversimplifying our analysis when we favor information with numbers over that without, simply because it has the appearance of being hard evidence.

2. The “rules for assigning numbers” will be discussed in greater depth in this chapter, but we should note here that those rules exist so that we can be more scientific in our measures, and can place more confidence in the numbers that those rules help generate (see Figure 1.2). We want to make decisions that are grounded in information that we believe correctly represent reality. This means the assignment of numbers should map the empirical nature isomorphically (i.e., on a “one-to-one” basis).
For example, if we assign the number “5 pounds” to represent the weight of an object, we want to make sure that the weight is 5 pounds and not 8 pounds or 3 pounds. Using a carefully calibrated scale is how we ensure in this example that we have correctly measured the item’s weight—assigned numbers to the object to accurately represent the quantity of its attribute of weight. The mundane nature of this example disappears when we find ourselves confronted with the need to measure variables of interest to marketers such as intentions, attitudes, and perceptions. How can we be sure that the number “4” correctly captures the intensity with which a respondent holds an intention, for example? We will devote further discussion to the ways of ensuring good measures in our research in this chapter.

3. The definition states that we attach numbers to the attributes of an object and not to the object itself. For example, we cannot measure the quantity of what you are now holding in your hand or viewing on your screen. There is no scale for measuring the amount of “bookness” in a book. We can, however, measure the attributes of a print book—its weight, dimensions in inches, number of pages, and so forth. We can even measure qualities less obvious such as its stature as great literature or its educational value; but, as described in point number 2, the rules for assigning numbers to those attributes will involve different measuring devices than those used to measure its physical properties. This caveat also holds true for the measurement of variables of interest to marketers.

We measure a consumer’s attitudes, income, brand loyalty, and other things, instead of measuring the consumer. In some cases, such as attitudes, we go a step further and measure the subcomponents of the variable. Attitudes, for example, are said to consist of cognitive, affective, and conative components that we would want to measure to ensure we have captured the essence of how strong a person’s attitude was toward an object. For example, if we are to claim we have measured a parent’s attitude toward a new product concept for a child’s fruit drink, we need to measure beliefs and knowledge (the cognitive component of attitudes), how positive or negative he or she feels about the concept (the affective component), and the parent’s predisposition to behave toward the product (the conative component).

4. Scientists in the physical sciences such as physics, chemistry, and biology have something of an advantage over behavioral scientists because the things physical scientists are interested in measuring have a physical reality, and the devices used to measure these things can be physically calibrated. Accurate measures are generated by carefully calibrating the measuring devices (such as micrometers and weight scales). Behavioral scientists, such as marketing researchers, cannot see or feel those things of interest to them (perceptions, intentions, brand loyalty, attitudes), and so must find ways of determining if the process they use to attach numbers is trustworthy in order to know if the numbers resulting from that pro-
cess are trustworthy. In other words, while a chemist can trust that the weight of a chemical is what a carefully calibrated scale says it is, the marketing researcher can trust that he or she has obtained a good measure of intent to purchase only by having faith in the measurement process used to attach numbers to that intention. There is no way of comparing the numbers on the intention scale to a standardized measure for intentions the way a chemist can check the measures of weight against a standardized scale for weight. We trust the numbers because we trust the process used to attach those numbers.

6.2 THE PROCESS OF MEASUREMENT

Information gained from conducting marketing research contributes to better decision making by reducing risk, which can happen only if researchers are able to collect information that accurately represents the phenomenon under study. When it is appropriate to measure that phenomenon, that is, attach numbers to reflect the amount of an attribute inherent in that object of interest, we must try to ensure that the process we use to take those measures is a good process. We have nothing to compare those numbers with to determine if they are good numbers, so we make sure the process is trustworthy so that we can believe the numbers resulting from the process are trustworthy and can indeed reduce the risk of decision making. The following process can help generate good measures (see Figures 6.1 and 6.2).
Step 1: Determine the Construct(s) of Interest

Constructs are abstract constructions (hence, the name) that are of interest to researchers. Some examples of constructs of interest to marketing researchers are customer satisfaction, heavy users, channel conflict, brand loyalty, and marketing orientation. These constructs are typical of the type of constructions of interest to marketers—they have no tangible reality apart from our defining them (unlike, for example, a botanist’s plant), we define and study them because we need to understand them in order to make decisions based on that understanding (for example, changing our policies on return of purchases in order to increase customer satisfaction). Because they have no tangible reality they are generally not directly observable. We cannot see customer satisfaction, but we can indirectly observe it by asking customers a series of questions that we believe reveal how satisfied customers are with our firm in specific areas. As an example of measuring a construct we will use “marketing orientation”—a core construct of the marketing discipline.

Step 2: Specify the Construct’s Domain

We must take care that we are accurately capturing what should be included in the definition of that construct. We previously mentioned that the tricomponent model indicates that an attitude contains in its domain cognitive, affective, and conative components. Social scientists have studied the construct “attitude” over many years and have generally agreed that its domain includes these three components. We specify a construct’s domain by providing a constitutive definition for the construct. A constitutive definition defines a construct by using other constructs to identify conceptual boundaries, showing how it is discernable from other similar but different constructs. A construct’s constitutive definition is what has been generally accepted in the marketing literature as a definition. Consider the constitutive definitions for the following related, but different, constructs:

Marketing orientation is the attention to identifying and satisfying customer needs, integration of effort by all areas of the organization to satisfying those needs, and focusing on the means by which an organization can achieve its goals most efficiently while satisfying those needs. Market orientation is the systematic gathering of information on customers and competitors, both present and potential, the systematic analysis of the information for the purpose of developing marketing knowledge, and
the systematic use of such knowledge to guide strategy recognition, understanding, creation, selection, implementation, and modification.²

The definition of market orientation is distinguished from marketing orientation by what it adds (a focus on potential customers as well as present customers and on competitors as well as customers), and subtracts (an interfunctional coordination).

Step 3: Establish Operational Definitions

The constitutive definition makes it possible to better define the construct’s domain by use of an operational definition. An operational definition indicates what observable attributes of the construct will be measured and the process that will be used to attach numbers to those attributes so as to represent the quantity of the attributes. Often, a construct’s attributes are identified in the constitutive definition.

We need to establish operational definitions of our constructs to move them from the world of abstract concepts into the empirical world where we can measure them. Marketing orientation remains an abstract concept until we say exactly what its attributes are and how, specifically, we intend to measure those attributes.

One example of operationalizing the marketing orientation construct³ in a hospital setting involved identifying five attributes of the construct (customer philosophy, marketing information systems, integrated marketing effort, strategic orientation, and operational efficiency), and then generating a set of nine statements for each attribute which fell along a strength of marketing orientation continuum anchored by the end points of “primitive” to “world class.” These statements were assigned a score on the nine-point scale by a panel of expert judges. The following are two examples of statements whose average score by the judges fell at different points on the scale. Respondents (hospital administrators) would choose which statements most accurately reflected the marketing practices at their hospital.

![Figure 6.3 Strength of Marketing Orientation](image)

“Marketing here is more than a staff function—it is heavily involved in line decision making.” (8.35)

“The feeling in my organization is that marketing activity is often contrary to the values of this hospital.” (1.25)

These example were two of forty-five item statements (nine statements for each of five attributes), which represent the operationalization of the marketing orientation construct.
Another operationalization of marketing orientation involved identifying four attributes of the construct (intelligence generation, intelligence dissemination, response design, and response implementation), and then generating thirty-two item statements, each of which would be scored on a five-point scale ranging from strongly disagree to strongly agree. Some examples of these operationalizations of the intelligence dissemination attribute (respondents were executives at manufacturing firms) are:

<table>
<thead>
<tr>
<th>We have interdepartmental meetings at least once a quarter to discuss market trends or strategies.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data on customer satisfaction are disseminated at all levels in this business unit on a regular basis.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

Note that these two operational approaches differ in the identification of the construct attributes, the item statements used to operationalize the attributes, and the method used to attach numbers to the item statements (also part of the operationalization process). Both examples, however, share in common the operationalization process of describing a specific set of operations that must be carried out in order to empirically measure the construct’s attributes (i.e., move it from mere abstract conceptualization to the real world where it can be measured by establishing a process for attaching numbers to represent the quantity of the attribute—in these cases the degree to which a firm exhibits marketing-oriented behavior). Researchers might not choose the same means of operationalizing the constructs of interest. How can we tell if our chosen approach represents good measurement methods if it is different from the methods used by other researchers, who can demonstrate that their methods have resulted, in fact, in good measures? The answer to this question lies in the next steps of the measurement process.

Step 4: Collect Data to Test Measures

In this step we use our operationalized measures to collect data from our target population (i.e., the measures in Figure 6.1). We need this data to help us determine if we are on the right track with our operationalized measures. That is, have we done a good job in developing the operational definitions and measuring processes so that they accurately represent our constructs of interest? As was mentioned before, since we
have no standardized measures that can be calibrated to give us accurate data, such as a chemist using a carefully calibrated weight scale, we must use data to help us determine if the methods used to collect that data were good. If the process of measurement is good the results of the process will also be assumed to be good. “Collecting data” in the previous two examples would consist of using the questionnaires to collect responses from the target populations (hospital administrators in the first example, executives at manufacturing firms in the second).

Step 5: Purify the Measures

In Step 5 we use the data collected in Step 4 to determine which items in our original list of operationalized items are reliable. Some items we thought would be good ways to operationalize our abstract constructs may not be as good as we thought. We can determine which item statements are keepers and which are to be rejected for our final item list by conducting reliability tests. We will discuss reliability in greater detail later in this chapter, but for now we are using some statistical procedures to help identify which item statements work together as a set, capturing the various aspects of the construct’s attributes we were seeking to measure in our operationalizations.

For example, the two statements that were used to illustrate the attributes for marketing orientation in the two studies described in Step 2 were keepers — they passed the statistical tests intended to use the collected data to determine which item statements were appropriate pieces of the whole attribute we sought to measure. Other item statements might have failed those tests (the statements did not contribute to describing the attribute as we thought they would), and are eliminated from the final version of our measuring device (questionnaires in these two cases).

Step 6: Conduct Validity Tests

Once we have purified the scale by eliminating item statements that fail to pass our reliability test, we are ready to conduct another test to determine how much faith we will place in the results of our research. Here we are testing for validity—did we actually measure what we were trying to measure? Validity will also be discussed in greater depth later in this chapter. Here, we should merely make note of the need to determine how successful we were in establishing measures that did correctly reflect the quantities of those attributes of our constructs of interest. Did we, in fact, accurately measure the degree to which an organization was marketing oriented?

Step 7: Analyze Research Findings

If we have successfully developed measures that are reliable (Step 5) and valid (Step 6) we are now ready to analyze our data to achieve the objectives of our research study: answer research questions, test hypotheses, check for cause and effect relationships, describe the extent to which a population behaves in a specific manner, and the like. A report can then be written that states the results of the research.
6-2a Commentary on the Measurement Process

Note that in this seven-step process data are actually analyzed two different ways. In Steps 5 and 6 data are being analyzed not to determine what are the findings of the research itself (i.e., not to obtain answers to the research questions), but rather to determine if the process used to collect the data generated results which can be trusted—did the process generate reliable, valid information? Both of these measures of data trustworthiness are matters of degree instead of binary yes or no conclusions. We determine the degree of reliability and validity rather than determining whether the data are or are not reliable or valid. Once we have established degree of reliability and validity we are in a better position to know how secure we can be in our research conclusions when we analyze the same data in Step 7 to achieve the purpose of doing the research study itself.

We should also point out that some measurement processes\(^5\) suggest collecting data twice—once to determine which item statements are reliable (after Step 4), then again after unreliable item statements have been eliminated (between Steps 4 and 5), performing reliability and validity tests on the second set of data, followed by analysis of the data for research findings (Step 7).

Now a reality check: Do all or most marketing research studies actually follow a measurement process similar to the seven step process outlined here? Well, yes and no. Marketing scholars doing research on topics of interest to the discipline of marketing (such as “Does being marketing oriented increase a firm’s profit?”), would have to do something like this process or they might not get their research results published! However, applied marketing-research studies, such as described in this text, are less vigilant in conducting such measurement processes. It should be obvious that all researchers are concerned whether or not they have measures that can be trusted before drawing conclusions and making decisions based on research findings. Therefore, attention to issues of construct domain, proper operational definitions, appropriate data-collection methods, and reliability and validity checks are efforts intended to generate data that accurately represent the object of the research and can lead to better decisions.

6-3 WHAT IS TO BE MEASURED?

There are many different types of measures used in marketing research. However, most measures fall into one of the following three categories:\(^6\)

1. States of being—age, sex, income, education, and the like.
3. States of mind—attitudes, preferences, personality, and the like.

Table 6.1 shows examples of the types of measures frequently used in consumer
and industrial marketing research. The criterion for selecting what to measure is based on our knowledge or expectation that what we want to measure will provide insight into or help solve the marketing decision problem for which data are being collected. Thus, the relevant measures for any study are based on the research objectives, which indicate the types of information needed.

The research objectives indicate the concepts (constructs) that must be measured. For example, customer satisfaction, store loyalty, and sales performance are all concepts that relate to marketing problems. However, most concepts can be measured in more than one way. Store loyalty, for example, could be measured by: (1) the number of times a store is visited, (2) the proportion of purchases made at a store, or (3) shopping at a particular store first. These alternate measurement approaches are our operational definitions. We develop operational definitions for two types of variables: discrete and continuous.

TABLE 6.1. Types of Measures

<table>
<thead>
<tr>
<th>Measurement Type</th>
<th>Ultimate Consumers</th>
<th>Industrial Customers</th>
</tr>
</thead>
<tbody>
<tr>
<td>States of Being</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td>Size or volume</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td>Number of employees</td>
</tr>
<tr>
<td>Income</td>
<td></td>
<td>Number of plants</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td>Type of organization</td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brands purchased</td>
<td></td>
<td>Decision makers</td>
</tr>
<tr>
<td>Coupon redemption</td>
<td></td>
<td>Growth markets</td>
</tr>
<tr>
<td>Stores shopped</td>
<td></td>
<td>Public vs. private</td>
</tr>
<tr>
<td>Loyalty</td>
<td></td>
<td>Distribution pattern</td>
</tr>
<tr>
<td>Activities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>States of Mind</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attitudes</td>
<td></td>
<td>Management attitudes</td>
</tr>
<tr>
<td>Opinions</td>
<td></td>
<td>Management style</td>
</tr>
<tr>
<td>Personality traits</td>
<td></td>
<td>Organizational culture</td>
</tr>
<tr>
<td>Preferences</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Discrete variables are those that can be identified, separated into entities, and counted. The number of children in a family is an example of a discrete variable. Although the average may be 3.5, a given family would have 1, 2, 3, or 4 or more children, but not 3.5.

Continuous variables may take on any value. As a simple rule, if a third value can fall between the two other values, the variable is continuous. It can take on an infinite
number of values within some specified range. Temperature, distance, and time are continuous variables, and each can be measured to finer and finer degrees of accuracy. Frequently, continuous variables are rounded and converted to discrete variables expressed in convenient units such as degrees, miles, or minutes.

6-4 WHO IS TO BE MEASURED?

The question of the object of the measurement process may appear to have obvious answers: people, stores, or geographic areas. However, more thoughtful answers would reveal a multiplicity of possible objects to be measured.

For example, the level of influence on decision making of a husband and wife depends in part upon the product or service being purchased. The resulting decision might be wife dominated, husband dominated, joint, or autonomic (either solitary or unilateral). Moreover, such decision-making influence can change over time, as evidenced in recent trends toward female heads of households making financial decisions. Husband-wife decision making also varies from culture to culture. In another study of children’s influence on decision making in the family, it was discovered that about 17 percent of the nine-to-twelve-year-old children surveyed considered themselves the main decision maker with regard to a decision to go to a restaurant, and 40 percent thought themselves the primary decision maker in the choice of restaurant. Thus, collecting data from the “decision maker” does not always represent an obvious choice of respondent.

The buying-center concept used in understanding organizational buying patterns provides a useful framework for other consumer and industrial purchasers. A buying center consists of everyone involved in a buying action.

Buying-center participants play different roles. These roles must be identified and understood to select the type of respondents to be measured in a research project. These roles are:

- Users—those who actually use the product
- Gatekeepers—those who control the flow of information or access to decision makers
- Influencers—those who influence the choice of product or supplier by providing information
- Deciders—those who actually make the choice of product or supplier
- Buyers—those who actually complete the exchange process for a family or organization

The major point of this discussion is to emphasize the need to judiciously select the respondents, stores, areas—the “who” to be measured. If we ask questions of the wrong people, we will still get answers, but they will not be meaningful and could even be misleading.
6-5 HOW TO MEASURE WHAT NEEDS TO BE MEASURED

Measurement involves a system of logical decision rules incorporated into a scale. Four scales widely used in marketing research are nominal, ordinal, interval, and ratio scales. These are listed in order of the least sophisticated to the most sophisticated in terms of the amount of information each provides. The scale classification of a measure determines the appropriate statistical procedure to use in analyzing the data generated through the measurement process.

6-5a The Nominal Scale

The nominal scale is the lowest level of measurement. It measures difference in kind (male, female, member, nonmember, and the like). Many people consider a nominal scale a qualitative classification rather than a measurement. It produces categorical data rather than the metric data derived from more advanced scales. While numbers may be used as labels (e.g., 0 for males, 1 for females), they can be replaced by words, figures, letters, or other symbols to identify and distinguish each category. Nominal scales are said to recognize differences in kind, but not differences in degree. As a result, nominal scales tend to oversimplify reality. All items assigned to the same class are assumed to be identical.

Summaries of data from a nominal scale measurement are usually reported as a count of observations in each class or a relative frequency distribution. A mode, or most frequently observed case, is the only central tendency measure permitted. Since the nominal scale does not acknowledge differences in degree, there are no useful measures of dispersion (such as range, standard deviation, and variance). This scale calls for nonparametric statistical techniques such as chi-square analysis.

6-5b The Ordinal Scale

The ordinal scale goes a step further than the nominal scale to introduce a direction of difference. If measurement can be ordered so that one item has more than, or less than, some property when compared with another item, measurement is said to be on an ordinal scale. Ordinal scales are frequently used in ranking items such as best, or second best. Such a ranking reveals position, but not degree. For example, if favorite vacation destinations are rank ordered, it may be determined that Florida ranks first, the Rocky Mountains second, and New England third, but it is not clear if all three are relatively close in desirability, or if Florida is much more desirable and the Rockies and New England are distant second and third choices.

The most appropriate statistic describing the central tendency on an ordinal scale is the median. Dispersion can be quantified using the range, interquartile range, and percentiles.
6.5c The Interval Scale

Measurement is achieved on an interval scale with two features: (1) a unit of measurement, and (2) an arbitrary origin. Temperature, for example, is measured by interval scales. Each scale has a unit of measurement, a degree of temperature. An interval scale indicates a difference, a direction of difference, and a magnitude of difference, with the amount expressed in constant scale units. The difference between 20 and 30 degrees represents the same difference and direction as the difference between 100 and 110 degrees.

The arbitrary origin of the interval scale means there is no natural origin or zero point from which the scale derives. For example, though both Fahrenheit and Celsius scales are used to measure temperature, each has its own zero point.

The arithmetic mean is the most common measure of central tendency or average. Dispersion about the mean is measured by the standard deviation. Many researchers will assume their measures are interval level measures to permit the use of more powerful statistical procedures. Great care must be used here to avoid the use of inappropriate statistical procedures.

6.5d The Ratio Scale

The most advanced level of measurement is made with a ratio scale. This scale has a natural origin. Zero means a complete absence of the property being measured. Properties measured on a ratio scale include weight, height, distance, speed, and sales. Measurement on a ratio scale is less frequent in marketing research than in the physical sciences. All the common descriptive and analytical statistical techniques used with interval scales can be used with ratio scales. In addition, computation of absolute magnitudes are possible with a ratio scale, but not with an interval scale. Therefore, while it cannot be said that 100°F is twice as hot as 50°F (it is not when converted to Celsius), it can be said that $2 million in sales is twice as much as $1 million in sales.

Table 6.2 (next page) is a summary of these measurement levels along with sample types of variables and questions used in their measurement.

6.6 ASSESSING RELIABILITY AND VALIDITY OF OUR MEASURES

In a perfect world our measures would exactly represent the construct under study, with no bias or error introduced into the measurement process. Since we live in an imperfect world we must expect that the numbers we collect in our research to represent our constructs will contain a certain amount of error. In other words, if M represents our measures (i.e., numbers) and T represents the true, accurate quantity of our construct we are trying to measure, we could represent the relationship as

\[M = T + E \]

where E represents errors introduced into the measure. Here we see that any numbers that are collected in the measurement process to represent the attributes of the construct of interest contain the true quantity of the attribute plus a certain amount of er-
TABLE 6.2. Scales of Measurement

<table>
<thead>
<tr>
<th>Measure</th>
<th>Results</th>
<th>Sample Questions</th>
<th>Measure of Central</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal</td>
<td>Classification of</td>
<td>Which brand do you own?</td>
<td>Mode</td>
</tr>
<tr>
<td></td>
<td>variables</td>
<td>A ___ B ___ C ___</td>
<td></td>
</tr>
<tr>
<td>Ordinal</td>
<td>Order of variables</td>
<td>Rank your preference for stores.</td>
<td>Median</td>
</tr>
<tr>
<td></td>
<td></td>
<td>First ___</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Second ___</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Third ___</td>
<td></td>
</tr>
<tr>
<td>Interval</td>
<td>Differences in</td>
<td>The salespeople were friendly.</td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td>variables</td>
<td>Strongly Agree ___</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agree ___</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neutral ___</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disagree ___</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Strongly Disagree ___</td>
<td></td>
</tr>
<tr>
<td>Ratio</td>
<td>Absolute</td>
<td>What was your sales volume by</td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td>magnitude of</td>
<td>store last year?</td>
<td>Geometric</td>
</tr>
<tr>
<td></td>
<td>differences in</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Store A $ ___</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Store B $ ___</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Store C $ ___</td>
<td></td>
</tr>
</tbody>
</table>

ror. How does this error enter into our measures? There are several explanations why we might see a difference between the measured value and the true value:11

1. Short-term characteristics of the respondent such as mood, health, fatigue, and stress.
2. Situational factors such as distractions or other variations in the environment where the measures are taken.
3. Data-collection factors introducing variations in how questions are administered (such as different tone of voice for different interviewers) and variations introduced by the interviewing method itself (that is, Internet, phone, mail, personal contact).
4. Measuring instrument factors such as the degree of ambiguity and difficulty of the questions and the ability of the respondent to provide answers.
5. Data analysis factors introduced during the coding and tabulation process.
6-6a Reliability

A reliable measure is one that consistently generates the same result over repeated measures. For example, if a scale shows that a standardized one pound weight actually weighs one pound when placed on the scale today, tomorrow, and next Tuesday, then it appears to be a reliable scale. If it reads a different weight, then it is unreliable, the degree of unreliability indicated by how frequently and by how much it reads an inaccurate weight. A reliable scale will also indicate that a different weight placed on the scale consistently shows a different measure than the one pound weight (that is, a scale is not reliable if it says a one-pound weight weighs one pound consistently, but says every other weight is also one pound because it is stuck on that measure). We can determine whether our measures of psychological constructs are reliable using one of several types of tests.

Test-Retest Reliability. The objective with test-retest reliability assessment is to measure the same subjects at two different points in time under approximately the same conditions and compare results. If there was actually no change in the object of measurement (such as someone’s preferences or attitudes), a reliable measuring device (such as a questionnaire) would generate the same results. Obvious problems are that it may not be possible to get the same respondents to respond to the test, the measurement process itself may alter the second responses, and conditions may be difficult to duplicate.

Alternative Form. The deficiencies of test-retest reliability measures can be overcome to some degree by using an alternative form of the measuring device. If you have at least two equivalent measuring forms (such as questionnaires), researchers can administer one form and then two weeks later administer the alternative form. Correlating the results provides a measure of the reliability of the forms.

Internal Consistency. Measuring reliability using an internal consistency approach usually involves the use of different samples of respondents to determine reliability of measures. A typical way to assess internal consistency would be to use a split-half technique, which involves giving the measuring instrument (such as a questionnaire) to all the respondents, then randomly dividing them into halves and comparing the two halves. High correlation represents good reliability. Another type of split-half comparison involves randomly splitting the item statements intended to measure the same construct into halves and comparing the results of the two halves of the statements for the entire sample. Again, high correlation of results (the way the respondents answered the item statements) suggests good reliability. Another way of testing for internal consistency is to use a statistical test such as Cronbach’s alpha for intervally scaled data or KR-20 for nominally scaled data. These measures will indicate how well each indi-
individual item statement correlates with other items in the instrument. A low correlation means the item statement should be removed from the instrument. Cronbach’s alpha is a common test done in Step 5: Purify the Measures of Our Measurement Process (see Figure 6.2). Also note that in Figure 6.1, reliability tests are using measures (data such as answers to questionnaires) to test whether our operational definitions (questionnaire questions) are reliable (e.g., internally consistent).

6-6b Validity

Validity is the extent to which differences found among respondents using a measuring tool reflect true differences among respondents. The difficulty in assessing validity is that the true value is usually unknown. If the true value were known, absolute validity could be measured. In the absence of knowledge of the true value, the concern must be with relative validity, that is, how well the variable is measured using one measuring technique versus competing techniques. Validity is assessed by examining three different types of validity: content, predictive, and construct.

The content validity of a measuring instrument is the extent to which it provides adequate coverage of the topic under study. To evaluate the content validity of an instrument, it must first be decided what elements constitute adequate coverage of the problem in terms of variables to be measured. Then the measuring instrument must be analyzed to assure all variables are being measured adequately. Thus, if peoples’ attitudes toward purchasing different automobiles are being measured, questions should be included regarding attitudes toward cars’ reliability, safety, performance, warranty coverage, cost of ownership, and the like, since those attributes constitute attitudes toward automobile purchase.

Content validity rests on the ability to adequately cover the most important attributes of the concept being measured. It is testing to determine how well we have specified the domain of our construct (see Figure 6.1). It is one of the most common forms of validity addressed in practical marketing research. A common method of testing for content validity is to ask experts to judge whether the item statements are what they purport to be. For example, if you are trying to develop item statements intended to measure customer satisfaction with the content of a Web site, you could get several experts on customer satisfaction for Web sites to judge the adequacy of your item statements, or use item statements previously found to have passed content validity tests.

Predictive or pragmatic validity reflects the success of measures used for estimating purposes. The researcher may want to predict some outcome or estimate the existence of some current behavior or condition. The measure has predictive validity if it works (see Figure 6.1). For example, the ACT test required by many colleges has proved most college students has proved useful in predicting success in college courses. Thus, it is said to have predictive validity. Correlation of the independent (ACT test score) and dependent (college GPA) variables is often used to test for predictive validity.
Construct validity involves the desire to measure or infer the presence of abstract characteristics for which no empirical validation seems possible. Attitude scales, aptitude tests, and personality tests generally concern concepts that fall in this category. In this situation, construct validity is assessed on how well the measurement tool measures constructs that have theoretically defined models as an underpinning. For example, a new personality test must measure personality traits as defined in personality theory in order to have construct validity. Construct validity is usually determined by testing to see if measures converge (convergent validity) when they are supposed to measure the same thing, but by different means or by different respondents, and discriminate (discriminant validity) when they are measuring different things. Construct validity is obviously important—if we are not really measuring what we thought we were measuring (we thought we were measuring brand loyalty but we were actually measuring store loyalty), we cannot have confidence that our decisions based on the research will achieve their goals. When two independent methods of measuring the same construct converge as expected (such as two different measures of the degree of a consumer’s brand loyalty), then we have some degree of convergent validity (see Figure 6.1). When two measures diverge as expected (such as brand loyalty and eagerness to try a new brand), then we have some degree of discriminant validity. How each of these tests of construct validity is determined varies for different research studies.

6-6c Commentary on Reliability and Validity

As stated previously, researchers conducting research in order to make marketing decisions rarely conduct the kinds of formal tests of reliability and validity described here. However, it should be obvious to the reader that good research is good, at least to some degree, because it generates data we have faith in as a picture of reality—i.e., it uses a data collection instrument which could consistently generate similar results when used repeatedly (it is reliable), and it measures what it is intended to measure (it is valid). An illustration will help make the point about the wisdom of being concerned about these issues when doing research, even nonacademic practical research. Let’s say our construct of interest is an accurate rifle. If we were living on the frontier, an accurate rifle would not only be an abstract concept of intellectual interest, it could be a life or death matter! That is practical in the extreme! We want to do reliability and validity tests on the rifle before we make decisions based on its use, so we clamp it in a vise to make it steady (and remove the variability of the skill of the shooter) and sight it at the center of a target a reasonable distance away. We do this at an indoor shooting range where conditions are held constant (so we can avoid the problems previously mentioned about environmental variables that can affect our measures). The rifle is then fired numerous times using a mechanical triggering device. Figure 6.3 displays several different possible results of our test.

(a) Neither Reliable nor Valid
(b) Reliable, but not Valid
(c) Reliable and Valid
Figure 6.3 Possible Results of Firing a Rifle to Test for Reliability and Validity of an “Accurate Rifle”

As shown in (a), the rifle is very inconsistent (unreliable) in its shot pattern, and does not hit the center of the target very often (it is not valid as an accurate rifle). In (b), there is much better consistency (it is reliable), but it still fails to be what it is supposed to be—an accurate rifle. That is, the construct “accurate rifle” means it hits what it is aimed at, and the rifle in both (a) and (b) does not do that. Reliability is obviously less important than validity here. You would take little comfort in knowing your rifle could consistently hit six inches above and a foot to the left of a charging mountain lion. In (c) we see that the rifle can consistently (reliably) hit what it is aimed at (it is a valid accurate rifle), which increases our faith in it as a tool of practical value.

In the same way, we will have more faith in our ability to make good decisions if we believe the data we analyze to make those decisions were generated using valid and reliable data collection instruments. As mentioned at the beginning of the chapter, since we do not have a standard, calibrated set of results to compare our results to in order to know if the results are good, we must determine if the results were collected using good measuring devices. If the devices (questionnaires, observation methods, and the like) are good, then we believe the results from use of those devices are good—that is, reliable and valid representations of the reality we sought to measure. For example, we want to be sure that our efforts to measure consumer preference and intention to purchase product designs A or B have accurately represented consumers’ actual desires and likely behavior, so that we can have faith in our decision to introduce design A instead of B because the research supports that decision.

Research Project Tip

Indicate how you will check to ensure that the results of your research are reliable and valid. This may not necessarily involve statistical tests, but should involve actions that check to ensure that you are in fact measuring what you say you are measuring and that the results are replicable. At a minimum you should indicate how you will test for content validity. Also, take special care in establishing your operational definitions. A careful and thorough literature search of research previously conducted on your topic is one of the best ways to improve the reliability and validity of your data collection instrument. You are able to better define the domain of your construct and perhaps even find questionnaires that have been tested for validity and reliability in the literature.

If we do not know whether we can trust the results of the research, why do re-
search at all? The alternative to good research is to make your decision and hope for the best. By doing marketing research we are saying that we want to reduce the uncertainty of the decision-making process. But we can only reduce the uncertainty by a reliable and valid representation of the real state of our constructs of interest. So, even if formal methods of testing for validity and reliability are not used, the wise researcher devotes thought to the construction of research instruments and using research methods that have proven over time to generate valid and reliable results. Interested readers should refer to some of the major works on the subject.\footnote{12}

6-7 MEASURING PSYCHOLOGICAL VARIABLES
Measurement of most variables depends upon self-report, that is, by the respondents volunteering the information when asked, instead of through observation. While a state of mind is obviously not directly observable (you cannot see a motive for purchasing an item), many behaviors are also not observable. Consequently, marketing researchers must ask people to respond to questions intended to measure (attach numbers to) an attribute of a construct in ways that reveal the quantity of the attribute. Researchers have developed scales that are believed to capture the quantity or intensity of the construct’s attribute.

Many of the states of mind mentioned are typically measured using scales developed for that purpose. We will describe several scales used for measuring various states of mind after discussing attitude measurement, a common object of measurement for marketing researchers.

6-7a Attitude Measurement
Attitudes are one of the most frequently measured constructs by marketing researchers. Why are attitudes of such universal interest? Because marketing decision makers are interested in them. Why are marketing decision makers interested in attitudes? Because they believe there is a close connection between the way a person thinks (their attitude) and what they are likely to do (their behavior). Why, then, don’t we just study behavior, since marketers are actually ultimately interested in understanding and influencing people’s behavior, not just their attitudes? There are several good reasons why marketers do focus on attitudes instead of exclusively on behavior:

1. Marketers may not have access to observation of or reporting of a person’s behavior. The behavior may occur over a long period of time or in private settings only, and therefore observation is either not possible or prohibitively expensive. Also, sometimes the behavior itself is of a nature that people will not voluntarily report it, but will answer attitude questions related to the behavior.

2. Sometimes the behavior cannot be reported because it has not yet occurred. Marketers seeking to determine the best combination of attributes for a new product must ask attitudinal questions about the desirability of those features since the product itself has yet to be produced and, hence, there is no behavior that can be recorded concerning the product.
3. Attitudes, under certain circumstances, are reasonably good predictors of behavior. Consequently, by measuring someone’s attitudes we can obtain a good indication of their likely behavior in the future. The connection between attitudes and behavior has, however, been the subject of extended debate among marketing researchers.13 Attitudes can help us understand why certain behaviors occur.

If attitudes are such good surrogates for behavior, why do we hear of the marketing blunders like New Coke, (see Exhibit 6.1) where making decisions on the basis of attitudes got marketers in some very hot water? The answer is that the research focused on only a limited set of attitudes toward the new formula versus the old (taste), and failed to measure other attitudes (how people felt about the idea of altering a formula for a product they had used for many years). Consider also the problems of using attitudes to predict behavior (see Exhibits 6.2 and 6.3).

EXHIBIT 6.1. Coca-Cola’s “New” Coke Fiasco

When the Coca-Cola Company unveiled its formula for New Coke, executives were certain that it was the right move to make. They described as “overwhelming” the results of taste tests with 190,000 consumers, most of whom preferred the new recipe over old Coke.

The record is now clear that the introduction of New Coke ranks right up there with the debut of the Edsel as one of the greatest marketing debacles of all time. What went wrong? After all, if a marketer cannot rely on the findings from 190,000 consumer taste tests, then what good is research in aiding marketing decisions?

Analysts now agree that the problem was Coke failed to measure the psychological impact of tampering with a venerable ninety-nine-year-old soft drink brand. “When you have a product with a strong heritage that people could always count on being there, the mind becomes more important than physiological responses,” said the research director for a rival cola.

In Exhibit 6.2 we see that peoples’ attitudes toward their diet resulted in their being
classified in specific groups. Separate measures of their behavior indicate not all of what they eat would be predicted from their attitudes. Why this inconsistency? Just as in the New Coke example, we see that people hold a multiplicity of attitudes toward an object, and not all attitudes will be consistent with a specific behavior (solid lines indicate consistency, dotted lines inconsistency):

\[
\begin{align*}
A1: & \text{ I think of myself as a sophisticated consumer.} \\
A2: & \text{ An occasional guilty pleasure is one way to give yourself a treat for being good the rest of the time.}
\end{align*}
\]

\[
B1: \text{ Eat rye bread} \\
B2: \text{ Eat Twinkies}
\]

Here, we see that attitude A1 is consistent with behavior B1, but not with behavior B2, while attitude A2 is consistent with behavior B2, but not B1. In other words, because people have a multiplicity of attitudes, focusing on any one attitude (A1) may not permit successful prediction of a single behavior (B2).

In Exhibit 6.3, we see that people were increasingly in agreement with the attitude that meal preparation should take as little time as possible. This fact failed to lead to an increase in sales of frozen vegetables. Why this inconsistency? In this case a multiplicity of behaviors are possible, only some of which are consistent with the attitude concerning meal preparation time.

\[
\begin{align*}
A1: & \text{ Meal preparation should take as little time as possible.} \\
B1: & \text{ Eat at fast-food restaurants.} \\
B2: & \text{ Cook with a microwave.} \\
B3: & \text{ Buy fewer frozen vegetables.}
\end{align*}
\]

Lesson

Attitudes and behavior are complex phenomena. When we try to simplify what is inherently complex for our own convenience we often draw erroneous conclusions. We are seekers after truth, not simplicity. If truth is complex, let’s try to understand its complexity. If it is simple, let’s just be thankful for its simplicity. What these examples do tell us is that we must strive very hard to make sure we have correctly sampled the domain of the attitudes we are seeking to measure (that is, have good content validity). For example, if we are trying to measure peoples’ attitudes toward eating healthfully, we would want to have a number of item statements that would be divided among the three components of attitudes. Example attitude questions about eating healthfully might be:
We would also want to correctly sample from the domain of the behavior of interest to us. We will now discuss the use of scales to measure attitudes and other psychological variables of interest to marketers.

6.7b Itemized Rating Scales

Itemized rating scales are just that—the points on the scale are itemized, with a description of the scale point provided. Several choices confront the researcher using an itemized rating scale:

1. The number of item statements and scale points. Research has indicated that scale reliability improves, up to a point, with increases in the number of item statements and scale points. So, for example, a questionnaire that asks for attitudes toward healthy eating is more reliable if it uses twelve attitude item statements (an example of an item statement is a declarative statement with itemized responses such as “I like the taste of most healthy foods” with responses like strongly agree, agree, neither agree nor disagree, disagree, strongly disagree), rather than three item statements—but thirty item statements is probably less reliable than twelve. Why? Because of the fatigue factor—respondents grow weary of answering too many questions, and their responses are made more to get finished rather than as a true representation of their state of mind. The same is true for response points on the scale; five is better than three, but more than ten points does not improve reliability. Typically, the number of scale points varies between five to seven (see examples).

2. Odd or even number of points. Is a scale with an even number of points preferable to an odd number, or is the odd number preferable? There is no hard evidence that supports either choice. The odd number provides a midpoint on the scale, while the even number forces respondents to lean toward one end of the scale or the other. This remains a matter of researcher preference.

3. Use of “don’t know” and “no opinion.” The general tendency for interviewers is to discourage respondents from choosing a “don’t know” or “no opinion” option when responding to a scaled item statement. Many respondents then select the midpoint of an odd-number scale as the default option. Obviously, researchers analyzing the data are then unable to determine how many people marked “3” on the five-point scale because that expressed the intensity with which
they held an attitude, and how many marked “3” because they did not know how they felt, and chose the midpoint because it was the safest option available. These kinds of compromises to the validity of the instrument argue persuasively for a scale that provides for both a “don’t know” and a “no opinion” option for respondents, and for instructions to interviewers to accept these responses from respondents.

It is generally conceded that itemized rating scales generate intervally scaled data, although there is an ongoing debate in the social sciences as to whether that position is defensible or not (some researchers believe itemized rating scales generate only ordinal data).

Examples of Itemized Rating Scales

6-7c Likert Scales

ATTITUDES

<table>
<thead>
<tr>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Neither Agree or Disagree</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

PERFORMANCE OR QUALITY

<table>
<thead>
<tr>
<th>Excellent</th>
<th>Very Good</th>
<th>Good</th>
<th>Fair</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

SATISFACTION

<table>
<thead>
<tr>
<th>Completely Satisfied</th>
<th>Very Satisfied</th>
<th>Fairly Well Satisfied</th>
<th>Somewhat Dissatisfied</th>
<th>Very Dissatisfied</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

IMPORTANCE

<table>
<thead>
<tr>
<th>Of Critical Importance</th>
<th>Very Important</th>
<th>Somewhat Important</th>
<th>Of Little Importance</th>
<th>Not at all Important</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

EXPERIENCE

<table>
<thead>
<tr>
<th>Far Exceeded My Expectations</th>
<th>Exceeded My Expectations</th>
<th>Met My Expectations</th>
<th>Did Not Meet My Expectations</th>
<th>Far Below My Expectations</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

INTENTION

<table>
<thead>
<tr>
<th>Extremely Unlikely</th>
<th>Very Unlikely</th>
<th>Somewhat Unlikely</th>
<th>About 50-50 % Chance</th>
<th>Somewhat Unlikely</th>
<th>Very Unlikely</th>
<th>Extremely Unlikely</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

BEHAVIOR

<table>
<thead>
<tr>
<th>Always</th>
<th>Frequently</th>
<th>Occasionally</th>
<th>Infrequently</th>
<th>Not at All</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>More Than Once a Week</th>
<th>About Once a Week</th>
<th>Two or Three Times a Week</th>
<th>About Once a Month</th>
<th>Less Than Once a Month</th>
<th>Almost Never</th>
<th>Almost Never</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Strictly speaking, a Likert scale is a five-point itemized rating scale with specific descriptors for the scale points. We list it separately here because it is one of the most frequently used scales for measuring attitudes. Developed by Rensis Likert, it has undergone many variations over the years. It consists of five points of agreement for measuring intensity of an attitude.

<table>
<thead>
<tr>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Neither Agree Nor Disagree</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
</table>

Variations have been made to turn it into a seven-point scale,

<table>
<thead>
<tr>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Somewhat Agree</th>
<th>Neither Agree Nor Disagree</th>
<th>Somewhat Disagree</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
</table>

or a bipolar scale,

which is not technically an itemized rating scale since the points of the scale are not itemized with a description.

The Likert scale is sometimes referred to as a summated ratings scale, because we can determine the strength of someone’s attitude, positive or negative, toward an object by summing their scores for each of the item statements. Consider, for example, how persons A and B answered the following questions:

<table>
<thead>
<tr>
<th>The hotel has helpful</th>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Neither Agree Nor Disagree</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>The hotel is</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The hotel has</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The summated rating score for person A is 5+ 4+ 5=14, and for person B it is 3+ 3+ 2= 8. Person A has an overall more positive attitude toward the hotel than person B. Note that we would not then state that person A’s attitude is 75 percent more positive (14 = 8= 1.75) than person B’s. Such a statement requires ratio-scaled data, and attitudes can never be measured on a ratio scale (there is no absolute zero point for attitudes). At best, a Likert scale generates interval data.

6-7d Rank-Order Scales

In a rank-order scale the respondent puts objects in an order of some variable under study (such as order of liking, preference, intention to buy, or quality, generating ordinal data. An example of such a scale is shown below:
Rank-order the following sporting events in terms of most desirable to least desirable for you to attend (1 = most desirable, 2 = second most desirable, and so on):

__ Super Bowl
__ World Series
__ NBA Championship Game
__ NHL All-Star Game
__ NCAA Basketball Championship
__ Masters Golf Tournament

The advantages of a rank-order scale are that it is easy for the respondent to understand and respond to, and it is a realistic representation of choice behavior (some objects would be purchased before others according to the rank order). The disadvantages are that the rank order appears without the researcher knowing his or her location on a like-dislike continuum. That is, all the items may be toward the highly liked end of the scale, or spread out along the scale so that number one is liked while the bottom numbered item is disliked, or all located at the disliked end of the scale (put another way, even the item ranked number one is only the least disliked of the entire group of disliked items rank-ordered). Another disadvantage is that data analysis is limited to those procedures permissible for ordinal-ranked data. Also, the respondents’ actual first choice may not have been included on the list, but researchers would not know this. Finally, we do not know how far apart the items are on the list in terms of desirability (1 and 2 may be highly desirable and close together, 3, 4, and 5 are much less desirable and far down the list), and we do not know why the items were ranked in that order.

6-7e Comparative Rating Scales

The comparative rating scale (also called a constant-sum scale) requires respondents to divide a fixed number of points, usually 100, among items according to their importance to the respondent. The result provides researchers with some understanding of the magnitude of the difference between the items’ importance to the respondent. An example is:

Please allocate 100 points among the items below such that the allocation represents the importance of each item to your choice of a hotel. The higher the number of points, the greater its importance. If an item has no importance you would assign no points to it. Please check when finished to ensure that your point total is 100.

Hotel belongs to a national chain ___
I receive frequent guest points for my stay ___
Location is convenient ___
Is good value for the money ___
Listed as a top quality hotel in guide book ___
Total 100 points
The task of allocating points becomes more difficult with a large number of items. Ten items are generally considered the maximum limit for the comparative rating scale.

6-7f Semantic Differential Scales

The semantic differential scale is a seven-point scale using pairs of adjectives or phrases that are opposite in meaning. Each pair of adjectives measures a different dimension of the concept. The respondent chooses one of the seven scale positions that most closely reflects his or her feelings. A large number of dimensions would be needed to completely measure a concept.

Two forms of a semantic differential scaled statement are:

<table>
<thead>
<tr>
<th>Clean</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>Dirty</th>
</tr>
</thead>
<tbody>
<tr>
<td>The store was clean.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>The store was dirty.</td>
</tr>
</tbody>
</table>

Again, the numbers assigned to the positions on the scale indicate order, so at least an ordinal level of measurement has been achieved, although many researchers assume interval level data are obtained through this method. Semantic differential scales can also be graphed to show comparisons by group or objects by plotting medians or means.

Figure 6.6 Profiles of Two Restaurants Using a Semantic Differential Scale

6-7g Stapel Scales

The Stapel scale is used as a substitute for the semantic differential when it is difficult to construct pairs of bipolar adjectives. The following example illustrates a Stapel scale for measuring airline performance on seating comfort.
Respondents would be instructed to circle positive numbers for when the adjective increasingly accurately describes the airline seating in economy class, and negative numbers when the adjective is increasingly less accurate in describing the airline. Stapel scales generate results similar to the semantic differential, but are easier to construct and administer, particularly over the phone.

6.7h Commentary on Scales

Some types of scales are designed to collect measures of a specific type of construct, while others can be used for more than one type of construct. For example, Likert, semantic differential, and Stapel scales were all originally designed as attitude-rating scales. They are also generally thought of as interval scales (generating intervally scaled data).

A comparative rating scale, in contrast, is an interval scale (or quasiinterval—scientists are not in agreement about this) that could be used to measure several constructs. See the following examples.

Motives. Allocate 100 points among this list of items with respect to their importance in selecting a university for an undergraduate degree:

- Parents attended the university
- National reputation for quality
- Student-teacher ratio
- Cost of tuition
- Close to home

Total 100 points

Preferences. Allocate 100 points among this list of items with respect to your preference for places to vacation:

- Disneyworld
- Mountains
- Beach
- Golf Resort

Total 100 points
A rank-order scale is similar in versatility to the comparative rating scale (could measure motives, preferences), but is an ordinal scale.

Example: Rank-order your preferences for places to vacation (first choice = 1, second choice = 2, etc.):

Disneyworld ______
Mountains ______
Beach ______
Golf Resort ______

See Table 6.3 for further clarification.

TABLE 6.3. Types of Scales and Their Properties

<table>
<thead>
<tr>
<th>Types of Data</th>
<th>Used to Measure</th>
<th>Typical Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Itemized Ratings</td>
<td>Interval</td>
<td>Varies</td>
</tr>
<tr>
<td>Likert</td>
<td>Interval</td>
<td>Five</td>
</tr>
<tr>
<td>Rank-orders</td>
<td>Ordinal</td>
<td>Varies</td>
</tr>
<tr>
<td>Comparative Rating</td>
<td>Interval or quasi</td>
<td>Varies</td>
</tr>
<tr>
<td>Semantic Differential</td>
<td>Interval</td>
<td>Seven</td>
</tr>
<tr>
<td>Stapel</td>
<td>Interval</td>
<td>Six</td>
</tr>
</tbody>
</table>

SUMMARY

The researcher must be sure that the measurement process is carefully analyzed to ensure good measurement tools are used in research. All the questions of what, who, and how to measure must be dealt with to yield valid and reliable measures of marketing concepts. Failure to exercise care throughout measurement procedures can result in misleading information and ineffective decisions. The process of developing measures to be used in research projects should constitute a substantial part of the researcher’s time and effort in the planning stages of each project. Using the proper scale for responding to questions measuring psychological variables is an important step in obtaining good measures. Care should be taken that attitude measures do not lead to improper and erroneous predictions of behavior.

DISCUSSION QUESTIONS

1. Do we test for construct and pragmatic (predictive) validity before or after we use the questionnaire to collect data from respondents? Explain.
2. Discuss how a thorough literature search can help improve the validity of the measures we will obtain in the descriptive research phase of a research project.

3. Describe how we could use Figures 6.1 and 6.2 to develop a questionnaire that could be used to measure attitudes and behavior toward a healthy diet. Provide examples of questions that could be generated from this process. Discuss how we would test the questionnaire for reliability and validity.

ENDNOTES

In 1992, MCS Publishing launched its first academic business journal because of the demand for more outlets for college professors to publish their research. Because the primary accreditation agency for colleges of business required professors to demonstrate currency in their discipline through research and publishing of their findings, the demand for appropriate journal outlets grew. Within the next five years, 23 more journal titles were added. MCS's success in this arena was due primarily to its printing technology and ability to print small volumes of a publication at a profit.

The success of these journals spurred the management at MCS to consider the college textbook market. Sales of textbooks and related materials are estimated at $6.9 billion dollars (National Association of College Stores, www.nacs.org/public/research/higher_ed_retail.asp, March 16, 2006). While MCS recognized it did not have the resources to compete with the large publishers such as McGraw-Hill, Thomson, and Prentice-Hall, they believed the market was large enough for them to capture a small portion and make a profit doing it. Thus, the decision was made to enter this market by focusing on a subset of the market -- colleges of business.

MCS had already developed relationships with business professors through its academic journals since many served as editors, co-editors, and on editorial review boards. Business publications accounted for over half of their academic journals. The company already had the technology to print textbooks, they owned their own printing presses, and they already had a highly-developed database of business professors throughout the United States. The only thing MCS did not have was an understanding of the process business professors used in deciding on a particular textbook.

To gather this critical information, MCS contracted with a marketing research
firm in Louisiana. The firm prepared a research proposal and used MCS’s current list of business professors as their sampling frame. Excerpts of their research proposal as well as the questionnaire follow.

Detailed Study Objectives
The market research study objectives were as follows:
I. Identify the relative importance of various criteria used in the adoption of a textbook.
 a. Content
 b. Edition of text
 c. Author(s) of text
 d. Advertising
 e. Cost
 f. Length
 g. Online material
II. Identify the relative importance of various ancillary materials.
 a. Test bank (electronic and paper)
 b. PowerPoint slides (basic and video-enhanced)
 c. Online materials (testing, quizzes, class material)
 d. Instructor’s manual (CD and paper)
 e. Cases
 f. Videos
III. Explore reasons a professor switches textbooks.
IV. Determine desirability of various methods of promoting a textbook.
 a. Direct contact (E-mail, telephone, direct mail)
 b. Publisher’s website
 c. Examination copy
 d. Advertisements
 e. Booth displays at conferences
 f. Contact by book reps
V. Determine desirability and frequency of contact methods.
 a. Method (personal visit, telephone, e-mail)
 b. Frequency of current contact
 c. Frequency of desired contact
VI. Explore the helpfulness of direct mail promotions.
 a. Specific book promotion
 b. Multiple book promotion
VII. Evaluate various book promotion options in terms of encouraging a professor to take a closer look at a new book.
 a. E-mail
CASE 24

b. Direct mail
c. Magazine
d. Website
e. Telephone
f. Contact by book rep
g. Examination copy

VIII. Evaluate impact of demographic information on textbook adoption.

a. Years of teaching experience
b. Rank
c. School size

Methodology
MCS’s business professor database contained 13,041 names and corresponding e-mail addresses. Since the professors represented a good cross-section of universities throughout all of the United States, the marketing research firm believed the database was a good representation of the business professor population.

An e-mail was sent to each of the 13,041 names in the database asking the individual if they would be willing to participate in the research. Embedded in the e-mail was a link to the actual survey. Once the survey was completed, it was submitted by the respondent to the marketing research firm.

For various reasons, such as wrong e-mail address, insufficient e-mail address, or the e-mail was viewed as SPAM by the university’s e-mail filter system, 1,274 e-mails were returned. This resulted in 11,767 e-mails being delivered. From this sample, 1,192 responded to the questionnaire, yielding a response rate of 10.13 percent.

Individuals were surveyed using a structured-undisguised questionnaire approach. Responses were automatically tabulated by the computerized system and placed in an Excel spreadsheet. This process greatly reduced data entry errors by clerks. The data were then analyzed by using frequency counts and means of each item. Significance tests were conducted based on the respondent’s rank, years of teaching experience, and the size of the institution.

QUESTIONNAIRE
The Textbook Adoption Process Used by College of Business Professors

MCS Publishing

“For each of the statements listed below, please indicate your answer by clicking in the circle or box. If you teach more than one course, answer the questions for the course or courses you teach most frequently.”

1) Please identify the relative importance of the following criteria in your decision to adopt a textbook.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Very unimportant</th>
<th>Very important</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content</td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>Edition of text</td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>Ancillary materials</td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>Author(s) of text</td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
</tbody>
</table>
2) Please identify the relative importance of the following ancillary materials in your decision to adopt a textbook.

<table>
<thead>
<tr>
<th>Ancillary Material</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic test bank</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Online testing</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Hard copy of test bank</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Video-enhanced PowerPoint slides</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Basic PowerPoint slides</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Hard copy of instructor’s manual</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Instructor’s manual on CD</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Cases</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Online student quizzes</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Online class material</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>CD for students</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Videos</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

3) Why do you switch textbooks from the edition you are currently using? (Please mark all that apply.)

- [] Unhappy with the current textbook
- [] Unhappy with the publisher of the current textbook
- [] Dissatisfied with the ancillary materials of the current textbook
- [] New edition of my current text is coming out and I want to change
- [] Content of a new textbook
- [] New textbook is better suited to my teaching style
- [] Better ancillaries in the new textbook

4) In terms of learning about new textbooks, evaluate each of the following methods on a scale of 1 to 5 with 1 being very undesirable to 5 being very desirable.

<table>
<thead>
<tr>
<th>Method</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-mail</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Direct mail</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Publisher’s website</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Telephone</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Examination copy</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Advertisements in media</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Booth displays at conferences</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Contact by book representative</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
5) In terms of communication from your book reps, how desirable is each of the following methods?

<table>
<thead>
<tr>
<th>Method</th>
<th>Very undesirable</th>
<th>Very desirable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal visit</td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>Telephone contact</td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>E-mail contact</td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
</tbody>
</table>

6) How often, if at all, do book reps contact you?

- ___ Four or more times a semester
- ___ Two to three times a semester
- ___ Once a semester
- ___ Less than once a year
- ___ Never

7) How often would you like to be contacted by your book rep?

- ___ Four or more times a semester
- ___ Two to three times a semester
- ___ Once a semester
- ___ Less than once a year
- ___ Never

8) How helpful are the following types of direct mail promotions from a publisher?

<table>
<thead>
<tr>
<th>Promotion</th>
<th>Not helpful</th>
<th>Very helpful</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific book promotions</td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>Multiple book promotions in one piece</td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
</tbody>
</table>

9) What, if any, types of book promotions encourage you to take a closer look at a textbook? Please rate each methodology below on a scale of 1 to 5 with 1 being most ineffective to 5 being most effective.

<table>
<thead>
<tr>
<th>Method</th>
<th>Most ineffective</th>
<th>Most effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-mail</td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>Direct mail</td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>Magazine</td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>Website</td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>Telephone</td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>Contact with book representative</td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>Examination copy</td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
</tbody>
</table>

10) How long have you been teaching?

- ___ 5 years or less
- ___ 6-10 years
- ___ 11-15 years
- ___ 16-20 years
- ___ More than 20 years

11) What is your current rank?

- ___ Adjunct
- ___ Instructor
- ___ Associate professor
- ___ Full professor
- ___ Assistant professor

12) What is your institution’s current student enrollment?

- ___ Less than 1,000
- ___ 1,000 – 4,999
- ___ 5,000 – 9,999
- ___ 10,000 – 14,999
- ___ 15,000 – 19,999
- ___ 20,000 – 24,999
- ___ 25,000 or more
Discussion Questions

1. Are the study objectives and methodology appropriate for management's information needs given in the case? Discuss.

2. Evaluate the questionnaire in relation to the research objectives. Are the appropriate topics covered? Is the sequence of questions logical? Is the structure of the individual questions appropriate for the needed data?

3. Evaluate the sampling process and sample size. What type of sampling methodology is being used? Is the publishing company’s professor database a good sampling frame since it does not contain the e-mails of every business professor within the United States? What problems could the sampling frame and sample cause in this situation?

Basic SPSS Applications

Use the SPSS file to analyze the data and answer the following questions:

1. What is the demographic profile of the respondents in this survey?

2. What criteria do professors use in selecting a textbook?

3. How important are the various ancillary materials provided by publishing companies?

4. Why do professors switch textbooks?

5. In terms of learning about new books, what methods are the most desirable?

6. How are professors being contacted by book reps? How often are professors being contacted and how does that compare to what they prefer?

7. What types of book promotions encourage a professor to take a closer look at a textbook?

Advanced SPSS Applications

1. Are there any significant differences in responses based on the number of years an individual has been teaching? (For this analysis, it is recommended that you collapse the number of years the respondent has been teaching into three categories: 10 years or less, 11-20 years, and more than 20 years.)

2. Are there any significant differences in responses based on the respondent’s rank? (For this analysis, it is recommended that you collapse the respondent’s rank into three categories: Assistant and below, Associate, and Full.)

3. Does school size have any significant impact on the respondent’s answers to the survey questions? (For this analysis, it is recommended that you collapse the student enrollment of the institution into four categories: Less than 5,000, 5,000-9,999, 10,000-19,999, and 20,000 or more.)